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ABSTRACT 20 

Both vehicle exhaust and cooking emission are closely related to the daily life of city dwellers, which are considered as 21 

major sources of urban secondary organic aerosol (SOA). Here, we defined the SOA derived from vehicle exhaust and cooking 22 

emission as "Urban Lifestyle SOA", and simulated their formation using a Gothenburg potential aerosol mass reactor (Go: 23 

PAM). After samples had been aged under 0.3-5.5 days of equivalent photochemical age, these two urban lifestyle SOA 24 

showed markedly distinct features in SOA mass growth potentials, oxidation pathways and mass spectra. The SOA/POA mass 25 

ratios of vehicle groups (107) were 44 times larger than those of cooking groups (2.38) at about 2 days of equivalent 26 

photochemical age. It reveals that organics from vehicle may undergo the alcohol/peroxide and carboxylic acid oxidation 27 

pathway to produce abundant less/more oxidized oxygenated OA (LO-OOA and MO-OOA), and only a few primary 28 

hydrocarbon-like organic aerosol (HOA) remains unaged. In contrast, organics from cooking may undergo the 29 

alcohol/peroxide oxidation pathway to produce moderate LO-OOA, and comparable primary cooking organic aerosol (COA) 30 

remains unaged. Our findings provide an insight into atmospheric contributions and chemical evolutions for urban lifestyle 31 

SOA, which would greatly influence the air quality and health risk assessments in urban areas. 32 
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1. Introduction 33 

Organic aerosol (OA) contributes 20-90% of submicron aerosols in mass (Jimenez et al., 2009;Zhang et al., 2011), and 34 

its fraction in urban areas is higher than that in suburban or background (Zhou et al., 2020). The OA could be divided into 35 

primary organic aerosol (POA) and secondary organic aerosol (SOA). POA is directly emitted into ambient air through coal 36 

combustion, biomass burning, vehicle exhaust, cooking procedure and so forth (Jimenez et al., 2009;Zhang et al., 2011;Zhou 37 

et al., 2020). SOA is formed via the oxidation of gas-phase organics and the distribution between gas and particle phase 38 

(Donahue et al., 2009). Significant SOA formation has been observed in several urban areas, but model failed to simulate this 39 

phenomenon accurately (Matsui et al., 2009;Kleinman et al., 2008;Volkamer et al., 2006;de Gouw et al., 2008). This 40 

discrepancy may attribute to the limited knowledge about the sources and characteristics of urban SOA.  41 

Over the past decades, megacities have already been widespread in developed regions, and rapid urbanizations have been 42 

sweeping across the globe especially in developing areas (Zhang et al., 2015). An increasing number of people tend to live in 43 

the urban for their livelihood, where they suffer from serious air pollution simultaneously from urban lifestyle sources 44 

typically involving vehicle and cooking fumes (An et al., 2019;Zhang et al., 2015;Chan and Yao, 2008;Guo et al., 2014;Guo 45 

et al., 2020). For instance, polycyclic aromatic hydrocarbons (PAHs) are important carcinogens coming from vehicle and 46 

cooking, which can cause severe lung cancer (Seow et al., 2000;Kim et al., 2015;Zhong et al., 1999). After PAHs are emitted 47 

to ambient air, they would be oxidized, distributed into particle phase and finally become the part of POA or SOA, thus adding 48 

unknown deviations on health risk assessments (Masuda et al., 2020). 49 

Vehicle and cooking emissions are important sources of OA in urban areas (Rogge et al., 1991;Rogge et al., 1993;Hu et 50 

al., 2015;Hallquist et al., 2016;Crippa et al., 2013;Mohr et al., 2012;Guo et al., 2013;Guo et al., 2012), take several megacities 51 

for example, in London and Manchester, these two lifestyle sources contributed 50% and 54% of OA in average (Allan et al., 52 

2010). In addition, the vehicle itself could even contribute 62% of OA mass in rush hour of New York City (Sun et al., 2012). 53 

As for OA source appointments in Paris, vehicle and cooking contributed maximum 46-50% of OA (Crippa et al., 2013). 54 

According to seasonal observations in Beijing, there were at least 30% of OA coming from vehicle and cooking emissions 55 

(Hu et al., 2017). Briefly, these two urban lifestyle sources are closely related to the daily life of city residents and could 56 

account for 20-60% of ambient OA mass in urban areas when only considering their contributions to POA (Allan et al., 57 

2010;Sun et al., 2011;Ge et al., 2012;Sun et al., 2012;Lee et al., 2015;Hu et al., 2017). Furthermore, the model speculated that 58 

vehicle and cooking emissions might even contribute over 90% of SOA in downtown Los Angeles by applying hypothetical 59 

parameters with a certain degree of uncertainty (Hayes et al., 2015). Therefore, vehicle and cooking are momentous sources 60 

of both POA and SOA in urban areas, and could be defined as “Urban Lifestyle Source of OA”.  61 

As is well-known, large amounts of volatile, semi-volatile and intermediate-volatility organic compounds (VOCs, 62 

SVOCs and IVOCs, respectively) are emitted from vehicle and cooking sources, leading to largely potential SOA productions 63 

(Klein et al., 2016;Katragadda et al., 2010;Liu et al., 2017c;Tang et al., 2019;Zhao et al., 2015;Esmaeilirad and Hosseini, 64 

2018;Zhao et al., 2017;Yu et al., 2020). Lab studies have investigated the formation of vehicle or cooking SOA using a smog 65 
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chamber or an oxidation flow reactor (OFR). On the one hand, some lab experiments have investigated the vehicle SOA based 66 

on variables such as fuel types, engine types, operating conditions and so on (Deng et al., 2020;Suarez-Bertoa et al., 2015;Zhao 67 

et al., 2015;Du et al., 2018). Several smog chamber results found that the mass loading of SOA exceeded POA when the 68 

equivalent photochemical age was more than one day (Gordon et al., 2013;Chirico et al., 2010;Nordin et al., 2013). Besides, 69 

OFR could simulate a higher OH exposure, and the peak SOA production occurred after 2-3 days of equivalent atmospheric 70 

oxidation (Tkacik et al., 2014;Zhao et al., 2018;Timonen et al., 2017;Watne et al., 2018;Alanen et al., 2017). The mass spectra 71 

of vehicle SOA showed both semi-volatile and low-volatility oxygenated organic aerosol (SV-OOA and LV-OOA) features 72 

along with the growth of oxidation degree (Tkacik et al., 2014). On the other hand, only a few lab experiments have 73 

investigated the cooking SOA based on simplified ingredients or a single cooking method, involving heated cooking oils (Liu 74 

et al., 2017a;Liu et al., 2018), stir-frying spices (Liu et al., 2017b) ,charbroiled meat (Kaltsonoudis et al., 2017) and Chinese 75 

cuisines (Zhang et al., 2020b). These lab experiments indicated that the characteristics of SOA are influenced by multiple 76 

factors, such as cooking methods, fuels, cookers or ingredients. The mass ratios of POA and SOA derived from cooking are 77 

comparable, and the mass spectra of SOA showed much more similarities with the ambient semi-volatile oxygenated OA (SV-78 

OOA) factors (Liu et al., 2018). Although these lab studies have provided important insights into the secondary formation of 79 

vehicle and cooking SOA, significant uncertainties still exist. Nobody has compared the different natures generated from 80 

these two urban lifestyle sources in detail, let alone pointed out their potentially different roles in the real atmosphere. 81 

In this work, we have designed our vehicle and cooking lab experiments according to daily basis situations in urban areas 82 

of China. For vehicle exhaust simulation, China V gasoline and three common operation conditions were chosen. For cooking 83 

emission simulation, four prevalent Chinese domestic cooking types were evaluated. A Gothenburg potential aerosol mass 84 

reactor (Go: PAM) was used as the oxidation system. All the fresh or aged OA was characterized in terms of mass growth 85 

potentials, elemental ratios, oxidation pathways and mass spectra. The aged OA could be divided into POA and SOA. The 86 

latter was defined as “Urban Lifestyle SOA” whose mass spectra would be compared with those of ambient SOA, like less-87 

oxidized oxygenated OA (LO-OOA) and more-oxidized oxygenated OA (MO-OOA) measured in urban areas of China. These 88 

findings are aim to support for the estimation of these two urban lifestyle SOA in ambient air, conducing to the policy 89 

formulation of pollution source control and health risk assessment of exposure to vehicle and cooking fumes. 90 

2. Material and Method 91 

2.1 Experimental Setup 92 

The vehicle experiment was conducted from July to October in 2019, at Department of Automotive Engineering, 93 

Tsinghua University. The cooking experiment was conducted from November 2019 to January 2020, at Langfang Branch, 94 

Institute of Process Engineering, Chinese Academy of Sciences. The field study was deployed at the Institute of Atmospheric 95 

Physics (IAP), Chinese Academy of Sciences (39°58′N; 116°22′E) in autumn and winter (Autumn: Oct. 1st, 2018 – Nov. 15th, 96 

2018; Winter: Jan. 5th, 2019 – Jan. 31st, 2019) (Li et al., 2020a). The sample site is located in the south of Beitucheng West 97 

Road and west of Beijing Chengde expressway in Beijing, which is a typical urban site affected by local emissions (Li et al., 98 
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2020b). 99 

The lab simulations of two urban lifestyle SOA were conducted with the same oxidation and measurement system. Tables 100 

1-2 contain information of vehicle and cooking experiment conditions. The vehicle exhaust was emitted from a gasoline direct 101 

engine (GDI) with China V gasoline (similar to Euro V) under three speeds (20, 40, 60 km/h), which represented the urban 102 

road condition in China (Zhang et al., 2020a). For all experiments, the gasoline direct injection (GDI) engine ran in a single 103 

room, its exhaust was drawn into pipeline and then entered the Go: PAM at a 30 fold dilution where aerosols and gases reacted 104 

at a stable temperature and relative humidity. On the other hand, four kinds of domestic cuisines were cooked with liquefied 105 

petroleum gas (LPG) in an iron wok, including deep-frying chicken, shallow-frying tofu, stir-frying cabbage and Kung Pao 106 

chicken composed of cucumbers, peanuts and chicken. The cooking time and oil temperature were different due to the inherent 107 

features of ingredients. For all experiments, the closed kitchen was full of fumes where the vision was blurred and the air was 108 

choky after a long time of cooking process. Subsequently, the cooking fumes were drawn into pipeline from kitchen to lab 109 

and then entered the Go: PAM at an 8 fold dilution where aerosols and gases reacted at a stable temperature and relative 110 

humidity. Both vehicle and cooking fumes were diluted at a constant ratio by a Dekati Dilutor (e-Diluter, Dekati Ltd.). The 111 

Go: PAM was able to produce high OH exposures using an ultraviolet lamp (λ=254 nm) in the presence of ozone and water 112 

vapor, in order to simulate the photochemical oxidation in the atmosphere (Li et al., 2019a;Watne et al., 2018). Blank 113 

experiments were separately designed in the presence of boiling water or dilution air under the same condition. The OA 114 

concentrations of blank groups were far below those of experimental groups, which indicated the background values were 115 

minor (Table S1). More details about experimental design and instruments can be found in Section S1. 116 

2.2 Measurements of the Gas and Particle Phase.  117 

Figure 1 presents the design of this lab simulation. The gases and aerosols were emitted from GDI room or kitchen, then 118 

reacted and sampled in a lab. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research 119 

Inc.) was used to identify the chemical compositions of OA (Nash et al., 2006). Its time resolution was 2 min (precisely, 1 120 

min for a mass sensitive V-mode, and 1 min for a high mass resolution W-mode). Two sets of scanning mobility particle sizers 121 

(SMPS-1, Differential Mobility Analyzer, Electrostatic Classifier model 3080; Condensation Particle Counter model 3778; 122 

SMPS-2, Differential Mobility Analyzer, Electrostatic Classifier model 3082; Condensation Particle Counter model 3772; 123 

TSI Inc.) scanned every 2 min before and after Go: PAM individually to identify the size distribution and number 124 

concentration of particles. The SMPS-1 determined the mass concentration of POA, while the SMPS-2 determined the mass 125 

concentration of aged OA, and their mass difference could be regarded as the SOA. A SO2 analyzer (Model 43i, Thermo 126 

Electron Corp.) was used to measure the decay of SO2 in offline adjustment. A CO2 analyzer (Model 410i, Thermo Electron 127 

Corp.) was used to reduce the CO2 interference to organic fragments in mass spectra of HR-ToF-AMS. The particle densities 128 

were measured through the determination of DMA-CPMA-CPC system (DMA-Differential Mobility Analyzer, Electrostatic 129 

Classifier model 3080, TSI Inc.; CPMA- Centrifugal Particle Mass Analyzer, version 1.53, Cambustion Ltd.; CPC- 130 

Condensation Particle Counter, Condensation Particle Counter model 3778, TSI Inc.). The POA (precisely, primary 131 
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Hydrocarbon-like OA, HOA, usually comes from vehicle exhaust; primary Cooking OA, COA) was regarded as the OA 132 

measured before Go: PAM, or the OA measured after Go: PAM when the OH exposure was zero. The aged vehicle OA and 133 

aged cooking OA were measured after Go: PAM under certain OH exposure. In order to prevent freshly warm gas from 134 

condensing on the pipe wall, sampling pipes were equipped with heat insulation cotton and a temperature controller. Silicon 135 

tubes were used to dry the emissions before they entered measuring instruments. Prior to each experiment, all pipelines and 136 

the Go: PAM chamber were continuously flushed with purified dry air until the concentrations of gases and particles were 137 

minimal. 138 

2.3 Data Analysis.  139 

2.3.1 HR-Tof-AMS Data 140 

The SQUIRREL 1.57 and PIKA 1.16 written in IGOR (Wavemetrics Incorporation, USA) were used to analyze the HR-141 

ToF-AMS data including mass concentrations, elemental ratios, ion fragments and mass spectra. The ionization efficiency 142 

(IE), relative ionization efficiency (RIE) and collection efficiency (CE) were determined individually before data processing. 143 

The 300 nm ammonium nitrate particles were applied for converting the instrument signals to actual mass concentrations 144 

(Jayne et al., 2000;Drewnick et al., 2005). A default value (1.4) of relative ionization efficiency (RIE) of OA was adopted. 145 

Another synchronous SMPS-2 was used to correct the collection efficiency (CE) of HR-ToF-AMS by comparing their mass 146 

concentrations (Gordon et al., 2014a). In order to separate the POA and SOA from aged OA, the mass spectra were resolved 147 

by positive matrix factorization (PMF) analysis (Ulbrich et al., 2009).  148 

2.3.2 Determination and Evaluation of Oxidation Conditions in Go: PAM 149 

The Go: PAM conditions for vehicle and cooking experiments can be seen in Tables 3-4. The OH exposures and 150 

corresponding photochemical ages in Go: PAM were calculated through an offline adjustment based on the decay of SO2 (Lambe 151 

et al., 2011). As shown in equation (1), KOH-SO2 is the reaction rate constant of OH radical and SO2 (9.0×10-13 molecule-1·cm3·s-1). 152 

The SO2, f and SO2, i are the SO2 concentrations (ppb) under the conditions of UV lamp on or off respectively. The 153 

photochemical age (days) can be calculated in equation (2) when assuming the OH concentration is 1.5×106 molecules·cm-3 154 

in the atmosphere (Mao et al., 2009).  155 

OH exposure = 
−1

𝐾OH-SO2

× 𝑙𝑛(
𝑆𝑂2,𝑓

𝑆𝑂2,𝑖
)     (1) 156 

Photochemical age = 
𝑂𝐻 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

24×3600×1.5×106   (2) 157 

Except for the off-line calibration based on the decay of SO2, a flow reactor exposure estimator was also used in this 158 

study (Peng et al., 2016). The OH exposures calculated by both methods showed a good correlation (Figure S1&S2). This 159 

estimator could also evaluate the potential non-OH reactions in flow reactor such as the photolysis of VOCs, the reactions 160 

with O(1D), O(3P) and O3. Our results showed that non-OH reactions were not significant except for the photolysis of 161 

acetylacetone. But there is no acetylacetone from vehicle exhaust or cooking emission according to our measurements and 162 

previous studies. The acetylacetone was usually considered as a kind of VOCs emitted from industrial production (Ji et al., 163 
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2020). Therefore, its potential photolysis wouldn’t take place during our cooking conditions, and OH reactions still played 164 

the dominant role. Overall, our Go: PAM could reasonably simulate the oxidation process of cooking OA in ambient.  165 

Furthermore, the external OH reactivity and OH exposure were both influenced by external OH reactants, such as NOx 166 

and VOCs during experiments. The NOx concentration was measured by a NO-NO2-NOx Analyzer (Model 42i, Thermo 167 

Electron Corporation, USA). As for VOCs, we have divided them into 5 types including alkane, alkene, aromatic, O-VOCs 168 

(Oxidized VOCs, mainly included aldehyde and ketone) and X-VOCs (halogenated-VOCs) using the measurement of GC-169 

MS (Gas Chromatography-Mass Spectrometry, GC-7890, MS-5977, Agilent Technologies Inc). The compounds with 170 

relatively high proportion were regarded as surrogate species for each type of VOCs. The total concentrations of VOCs were 171 

determined by a portable TVOC Analyzer (PGM-7340, RAE SYSTEMS). The external OH reactivities for different vehicle 172 

experiments (10.4~20.2 s-1) were all comparable to that of off-line calibration result (15.8 s-1), and the external OH reactivities 173 

for different cooking experiments (21.7~25.7 s-1) were also comparable to that of off-line calibration result (24.0 s-1). Besides, 174 

the ratio of OH exposure calculated by the estimator to that calculated by the decay of SO2 ranged from 83% to 119% for 175 

vehicle experiments and 97% to 111% for cooking experiments, which means that our off-line OH exposure could be a 176 

representative value to all experiments. The mixing and wall loss conditions have already met our experiment needs. Detailed 177 

tests about mixing condition and wall loss of the Go: PAM have been conducted in previous work according to Li et al.(Li et 178 

al., 2019a) and Watne et al (Watne et al., 2018), which could be found in Figure S3(a). In this study, we still corrected the wall 179 

loss of particle in each size bin measured by two synchronous SMPS (two SMPS run before and after Go: PAM respectively). 180 

3. Result and Discussion 181 

3.1 Formation Potential of the Urban Lifestyle SOA.  182 

As Figure 2 shows, the mass growth potentials of two urban lifestyle SOA were quite different. Although their SOA/POA 183 

mass ratios both increased gradually through functionalization reactions and finally reached the peak after 2-3 days of 184 

equivalent photochemical age (Kroll et al., 2009), the overall SOA mass growth potentials of vehicle SOA were far larger 185 

than those of cooking SOA. When the equivalent photochemical age was near 2 days (1.7 days), the mass growth potentials 186 

of vehicle SOA ranged from 83 to 150. In contrast, the mass growth potentials of cooking SOA only ranged from 1.8 to 3.2 187 

at about 2.1 days. Even if there was still a slight growth trend for cooking SOA at the highest OH exposure, it surely exhibited 188 

a much weaker mass growth potential on the whole compared with that of vehicle SOA. This significant distinction indicated 189 

that the vehicle exhaust may contribute abundant SOA and relatively fewer POA, while cooking emission may produce 190 

moderate POA and SOA in the atmosphere, which could attribute to their different types of gaseous precursors. For instance, 191 

vehicle tended to generate large amounts of aromatics and cycloalkanes, which showed high rate constants of reaction with 192 

OH and would lead to large SOA yields (Zhang et al., 2020a;Atkinson and Arey, 2003;Peng et al., 2017). By contrast, cooking 193 

tended to emit much more unsaturated fatty acids that were tough to be oxidized even under high OH exposures (Zeng et al., 194 

2020;Nah et al., 2013). Interestingly, a similar phenomenon had been observed from an OFR simulation in the urban roadside 195 

of Hongkong where potential SOA from motor vehicle exhaust was much larger than primary HOA, while potential SOA 196 
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from cooking emission was comparable to primary COA (Liu et al., 2019).  197 

3.2 Formation Pathway of the Urban Lifestyle SOA.  198 

As Figure 3 shows, the O:C molar ratios (O/C) of two urban lifestyle SOA were quite different. Although their oxidation 199 

degrees both increased gradually and finally reached the peak after 2-3 days of equivalent photochemical age, the O/C values 200 

of vehicle SOA were far larger than those of cooking SOA. When the equivalent photochemical age was 0.6 day, the O/C of 201 

vehicle SOA was 0.4-0.5, resembling a kind of LO-OOA in ambient air. When the equivalent photochemical age was near 2 202 

days (1.7 days), the O/C of vehicle SOA could reach 0.6, which was almost like a type of MO-OOA in the atmosphere. In 203 

contrast, the O/C of cooking SOA only rose to 0.4 at 2.1 days, similar to a kind of LO-OOA. These distinct features of O/C 204 

suggested that vehicle SOA was divided into LO-OOA and MO-OOA under different oxidation conditions, while the cooking 205 

SOA was only composed of LO-OOA. This difference was probably related to their precursors. For example, vehicle emitted 206 

large amounts of aromatics such as toluene, producing abundant SOA with a higher state of oxidation (Zhang et al., 207 

2020a;Suarez-Bertoa et al., 2015;Nordin et al., 2013;Liu et al., 2015;Deng et al., 2017). On the contrary, cooking generated 208 

many unsaturated fatty acids such as oleic acid, which would remain unreacted under high OH exposures and thus retained 209 

some features of fresh POA (Nah et al., 2013;Klein et al., 2016). 210 

Figure 4 illustrates diverse oxidation pathways of various sources of OA in a Van Krevelen diagram (Heald et al., 211 

2010;Ng et al., 2011;Presto et al., 2014). The cooking groups fell along a line with a slope of -0.10 implying an 212 

alcohol/peroxide pathway in forming SOA, while the vehicle groups fell along a line with a slope of -0.55 implying an 213 

oxidation pathway between alcohol/peroxide and carboxylic acid reaction. Additionally, these two secondary evolution 214 

properties are both different from those of biomass burning OA (slope≈-0.6) (Lim et al., 2019) and ambient OA (slope≈-1 to 215 

-0.5) (Heald et al., 2010;Hu et al., 2017;Ng et al., 2011), indicating that these two urban lifestyles SOA may undergo distinct 216 

oxidation pathways. 217 

3.3 Characteristics in Mass Spectra of the Urban Lifestyle SOA.  218 

As shown in Figure 5, m/z 43 (ƒ43) vs. m/z 44 (ƒ44) plot has been widely adopted to represent the oxidation process of 219 

OA (Ng et al., 2010;Hennigan et al., 2011). Generally, ƒ43 and ƒ44 derive from oxygen-containing fragments, the former comes 220 

from less oxidized components while the latter comes from more oxidized ones. The datasets of vehicle and cooking groups 221 

apparently fell along in different regions and showed different variations in the plot. Almost all cooking OA displayed 222 

relatively lower ƒ44 and higher ƒ43, and its ƒ43 and ƒ44 both increased slightly with the growing OH exposure, eventually 223 

distributing in the LO-OOA region. In contrast, all vehicle OA displayed moderate ƒ43 and abundant ƒ44, and only its ƒ44 224 

showed an obvious souring with the growing OH exposure, initially distributing in the LO-OOA region but finally spreading 225 

near the MO-OOA region. These distinct evolutions of oxygen-containing fragments for two urban lifestyle SOA inferred 226 

their intrinsic oxidation pathways and precursors. Vehicle might emit more easily oxidized aromatics, e.g. toluene and xylene, 227 

while cooking might produce more hardly oxidized fatty acids such as palmitic acid and octadecanoic acid (Zhao et al., 228 

2007;Reyes-Villegas et al., 2018;Schauer et al., 2002;Zeng et al., 2020;Deng et al., 2017;Gordon et al., 2014b;Nah et al., 229 
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2013;Zhang et al., 2020a). 230 

Figure 6 and Table 5 depict mass spectra and prominent peaks of aged OA from two urban lifestyle sources which could 231 

be used to deduce their inherent properties (Zhang et al., 2005;Kaltsonoudis et al., 2017;Liu et al., 2018;Chirico et al., 232 

2010;Nordin et al., 2013;Zhang et al., 2020b). The maximum SOA mass growth potentials of aged cooking SOA only ranged 233 

from 1.9-3.2 implying a mixture of POA and SOA, so its mass spectra needed to be deeply resolved by PMF in order to 234 

separate the POA and SOA (precisely, a kind of LO-OOA). However, those mass growth potentials of aged vehicle OA were 235 

extremely high, suggesting that it was fully oxidized and almost composed of SOA. According to the O/C ratios, the vehicle 236 

SOA under 0.6 day of photochemical age was defined as vehicle LO-OOA, while that under 2.9 days was regarded as vehicle 237 

MO-OOA.  238 

For average vehicle LO-OOA mass spectra, the prominent peaks were m/z 43 (ƒ43=0.133), 44 (ƒ44=0.077), 29 (ƒ29=0.076), 239 

28 (ƒ28=0.066), 41 (ƒ41=0.051), 55 (ƒ55=0.043) dominated by C2H3O+, C3H7
+, CO2

+, CHO+, C2H5
+, CO+, C3H5

+, C3H3O+ and 240 

C4H7
+ respectively, while the prominent peaks of average vehicle MO-OOA were m/z 44 (ƒ43=0.146), 28 (ƒ44=0.134), 43 241 

(ƒ43=0.117), 29 (ƒ29=0.071), 45 (ƒ45=0.032), 27 (ƒ27=0.031) dominated by CO2
+, CO+, C2H3O+, CHO+, C2H5

+, CHO2
+, C2H5O+ 242 

and C2H3
+ respectively. Compared with vehicle SOA mass spectra from other studies (Table 5), our average GDI SOA (LO-243 

OOA and MO-OOA) illustrated more abundances of oxygen-containing ions than those of Gasoline SOA and Diesel SOA 244 

simulated by a smog chamber with lower OH exposures (Chirico et al., 2010;Nordin et al., 2013).  245 

For average cooking LO-OOA, it was less oxidized than those from vehicle groups, whose prominent peaks were m/z 246 

43 (ƒ43=0.097), 44 (ƒ44=0.065), 29 (ƒ29=0.065), 41 (ƒ41=0.058), 55 (ƒ55=0.056), 28 (ƒ28=0.053) dominated by C2H3O+, C3H7
+, 247 

CO2
+, CHO+, C2H5

+, C3H5
+, C3H3O+, C4H7

+ and CO+ respectively. Compared with other cooking SOA mass spectra (Table 248 

5), our average cooking LO-OOA had similar peaks with heated oil SOA, but was different from that meat charbroiling SOA  249 

which displayed much more hydrocarbon-like features (Liu et al., 2018;Kaltsonoudis et al., 2017).  250 

3.4 Potential Chemical Evolution of Urban Lifestyle SOA in the Atmosphere.  251 

The AMS mass spectra indicated that the chemical evolution of urban lifestyle SOA in the Go: PAM might provide new 252 

insights and references on those of ambient SOA observed in the atmosphere. Figure 7 plots the correlation coefficients 253 

between the lab aged OA and ambient PMF-OA factors with growing photochemical ages (Li et al., 2020a). Table 6 exhibits 254 

correlations of mass spectra between lab results and ambient PMF factors, where the aged lab cooking OA was divided into 255 

POA and LO-OOA while the lab vehicle OA was divided into LO-OOA and MO-OOA.  256 

For aged GDI OA in Figure 7, its average mass spectra still remained some ambient HOA features (pearson r=0.80) 257 

under low photochemical age of 0.6 day with moderate hydrocarbon-like ions such as m/z 41 and 55, but it had already 258 

reached the same oxidation degree of ambient LO-OOA (pearson r=0.81) with high O/C (0.46) and ƒ43 (0.133). After aging 259 

in the Go: PAM, aged OA might finally become a kind of ambient MO-OOA (pearson r=0.97) at 5.1 days of photochemical 260 

age. This evolution of GDI OA (from HOA to LO-OOA to MO-OOA) was similar to the result of a previous vehicle OA 261 

simulation (from HOA to SV-OOA to LV-OOA) (Tkacik et al., 2014). 262 
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For aged cooking OA in Figure 7, although its correlations with ambient LO-OOA increased gradually from 0.56 to 0.73 263 

along with the growing photochemical ages, its correlations with ambient COA kept a high level all the time (pearson r>0.81) 264 

implying a mixture of POA and SOA due to some hardly oxidized compounds emitted from the cooking process. Therefore, 265 

it is necessary to resolve aged cooking OA mass spectra deeply by PMF (Figures S4-S11) and then compared its lab PMF 266 

results with ambient PMF factors. As Table 6 shows, the lab cooking POA was similar to ambient COA (pearson r=0.86) but 267 

less likely to LO-OOA (pearson r= 0.46) or MO-OOA (pearson r=0.39). By contrast, the lab cooking LO-OOA displayed 268 

many more ambient LO-OOA features (pearson r=0.76) and relatively fewer ambient COA characteristics than lab cooking 269 

POA did. In short, these comparisons between lab and ambient results revealed that organics from these two urban lifestyle 270 

sources might eventually form different SOA types in the real atmosphere. 271 

4. Conclusion 272 

In the present work, we define two urban lifestyle SOA in details and investigate their mass growth potentials, formation 273 

pathways, mass spectra, and chemical evolutions comprehensively. At about 2 days of equivalent photochemical age, the 274 

SOA/POA mass ratios of vehicle groups (107) were 44 times larger than those of cooking groups (2.38), and the O: C molar 275 

ratios of vehicle groups (0.66) was about 2 times large as those of cooking groups (0.34). Besides, both vehicle and cooking 276 

groups underwent alcohol/peroxide pathway to form LO-OOA, and the vehicle groups extra underwent carboxylic acid 277 

pathway to form part of MO-OOA. Furthermore, the characteristic mass spectra of these two urban lifestyle SOA could 278 

provide necessary references to estimate their mass fractions in ambient air, through a multilinear engine model (ME-2) 279 

(Canonaco et al., 2013;Qin et al., 2017). This application would reduce the large gaps of total atmospheric contributions and 280 

relevant environment effects for urban SOA, although remaining several uncertainties on SOA mass spectra due to missing 281 

complex mixture conditions in the Go: PAM.  282 

Although strict policies have been implemented to reduce primary particulate matter (PM) in urban areas. However,  283 

secondary PM especially for the abundant and complicated SOA, is difficult to be restricted (Wu et al., 2017;Li et al., 2018). 284 

According to our results, on the one hand, vehicle SOA might be a mixture of both LO-OOA and MO-OOA with high 285 

secondary formation potential, so it would be better not only filter out the exhaust PM with Gasoline Particulate Filter (GPF), 286 

but also reduce the gaseous precursors in order to restrict the secondary formation. On the other hand, cooking SOA might be 287 

a kind of LO-OOA with relatively low secondary formation potential, so it could be enough to remove the gas and particle 288 

emissions at the same level. In the future, these two urban lifestyle SOA may present increasing contributions in urban areas 289 

especially in megacities with growing atmospheric oxidants (Li et al., 2019b;Wang et al., 2017;Li et al., 2020a;Li et al., 2020b), 290 

but their investigations and further managements are far from sufficient, making it possible to become a greatly meaningful 291 

research focus.  292 

 293 

 294 

 295 
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 707 

Figure 1. Schematic of experiment system. 708 
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 710 

Figure 2. Mass growth potentials for two urban lifestyle SOA.  711 

 712 

Figure 3. Evolution of O:C molar ratio for two urban lifestyle SOA. 713 
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 715 

Figure 4. Van Krevelen diagram of OA from various sources. 716 

 717 

 718 

Figure 5. Fractions of entire organic signals at m/z 43 (ƒ43) vs. m/z 44 (ƒ44) from various sources as well as Ng triangle plot. 719 
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 721 

Figure 6. Average mass spectra of OA from two urban lifestyle sources. 722 
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 723 

Figure 7. Correlation coefficients (pearson r) between the lab aged OA and published ambient PMF-OA factors with growing 724 

photochemical ages. Ambient PMF-OA factors are the average results from two field studies in Beijing (Measured at a typical 725 

urban site during autumn and winter; Autumn: Oct. 1st, 2018 – Nov. 15th, 2018; Winter: Jan. 5th, 2019 – Jan. 31st, 2019).  726 

 727 
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